Complex Disordered Systems

Active Matter

Francesco Turci

Today

- Beyond thermal equilibrium
- Run-and-tumble dynamics
- Active Brownian particles
- Motility-induced phase separation (MIPS)

Beyond Thermal Systems

Equilibrium systems systems:

- Free energy is optimised (subject to constraints):
- Distribution of states given by Boltzmann statistics:

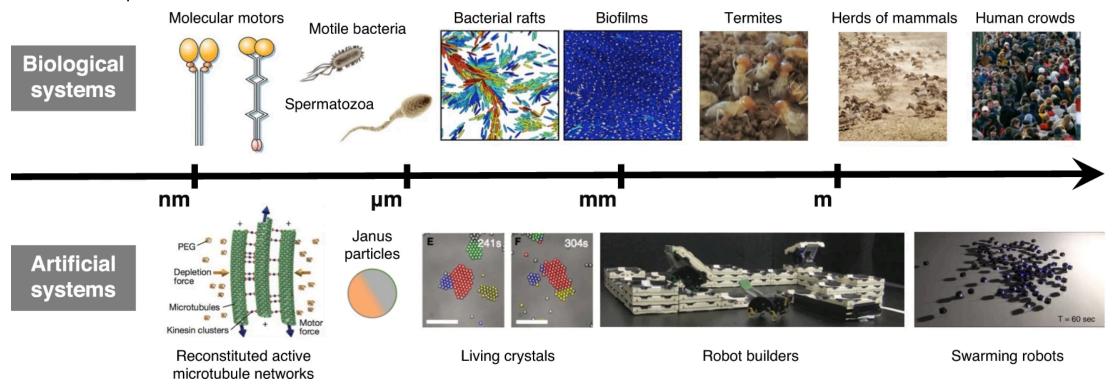
$$P({
m state}) \propto e^{-E({
m state})/k_BT}$$

Arrested systems

- Supercooled liquids: local equilibrium (thermal)
- Glasses/gels: slow relaxation (towards equilibrium)

Active matter: Nonequilibrium via **local dissipation**

- Local energy consumption
- Self-propulsion
- Dissipation at microscopic scale


Examples:

- Bacteria
- Synthetic microswimmers
- Molecular motors
- Bird flocks, fish schools

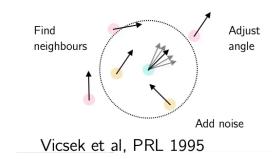
In a active systems, the distribution of states is **not given** by Boltzmann statistics!

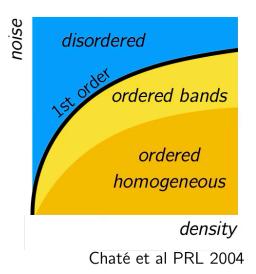
Examples of Active Matter

Some examples

Flocking as a minimal model

Flocking as a minimal model


The **Vicsek model** (1995) was one of the simplest models of active matter. Key ingredients: **alignment + self propulsion**


- ullet N particles with positions ${f r}_i$ and orientations $heta_i$
- Update rules:

$$\mathbf{r}_i(t+1) = \mathbf{r}_i(t) + v_0 \hat{\mathbf{n}}_i(t)$$

$$heta_i(t+1) = \langle heta_j
angle_{|\mathbf{r}_j - \mathbf{r}_i| < R} + \eta_i$$

- v_0 : constant speed
- R: interaction radius
- η_i : noise term (uniform random in $[-\pi/2,\pi/2]$)

Flocking as a minimal model

Vicsek simulation

Run-and-Tumble Motion

Further inspirations from the microbial world, where dissipation can be more directly observed (and even tuned).

Inspired by bacterial motion (*E. coli*)

Two phases:

ullet Run: Straight-line motion at constant speed v_0

• Tumble: Random reorientation

Key parameter: Tumble rate λ

Run-and-Tumble: Dynamics

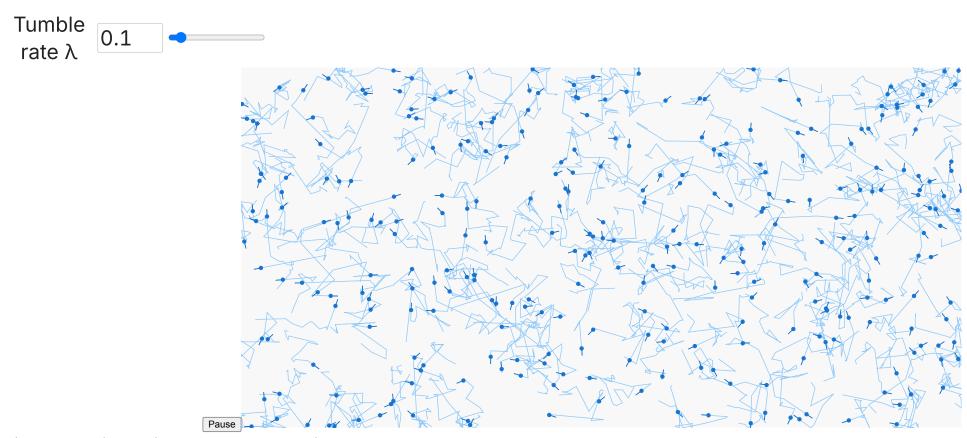


Figure 1: Non-interacting run and tumble particles.

Run-and-Tumble dynamics

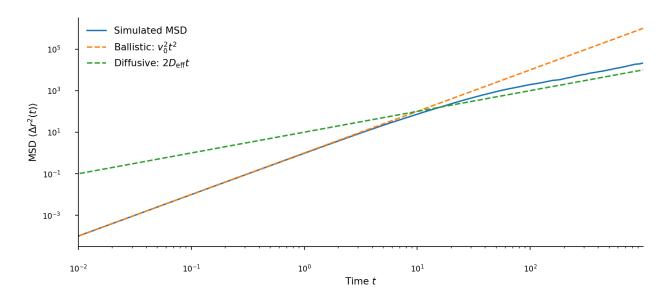
Run phase (constant velocity):

$$\mathbf{r}(t+\Delta t) = \mathbf{r}(t) + v_0 \hat{\mathbf{n}}(t) \Delta t$$

Tumble phase (random reorientation):

- ullet With probability $\lambda \Delta t$: randomize $\hat{f n}$
- Otherwise: continue running

Mean Squared Displacement


Two regimes

1. Ballistic (short times): $\langle \Delta r^2(t)
angle \sim v_0^2 t^2$

2. **Diffusive** (long times, $t\gg 1/\lambda$): $\langle \Delta r^2(t)
angle \sim 2 D_{ ext{eff}} t$

ullet Effective diffusion: $D_{ ext{eff}}=rac{v_0^2}{2\lambda}$ (2D)

Crossover time: $t_c \sim 1/\lambda$

Active Brownian Particles (ABPs)

Minimal model for self-propelled colloids (e.g., Janus particles)

Dynamics:

Translational motion

$$rac{d{f r}}{dt} = v_0 \hat{f n}(t) + \sqrt{2D_t} {m \xi}(t)$$

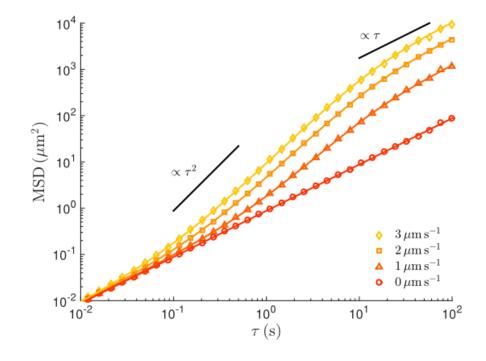
Rotational motion

$$rac{d heta}{dt} = \sqrt{2D_r}\eta(t)$$

- v_0 : self-propulsion speed
- D_t : translational diffusion
- D_r : rotational diffusion
- Continuous reorientation

Péclet Number:

$$Pe=rac{v_0}{\sqrt{D_tD_r}}=rac{v_0}{D_rL}$$

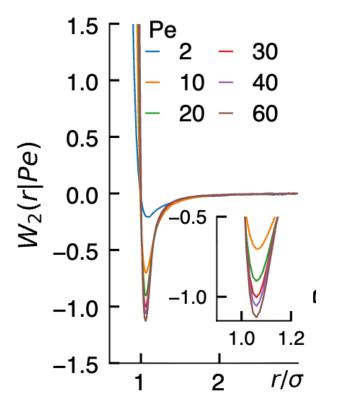

- Measures activity strength vs thermal motion
- $Pe \ll 1$: thermal equilibrium limit
- ullet $Pe\gg 1$: strong activity, far from equilibrium
- $L=\sqrt{D_t/D_r}$: characteristic length scale

ABP: Mean Squared Displacement

Three regimes:

$$\langle \Delta r^2(au)
angle = \left[4D_T + 2v^2 au_R
ight] au + 2v^2 au_R^2 \left(e^{- au/ au_R} - 1
ight)$$

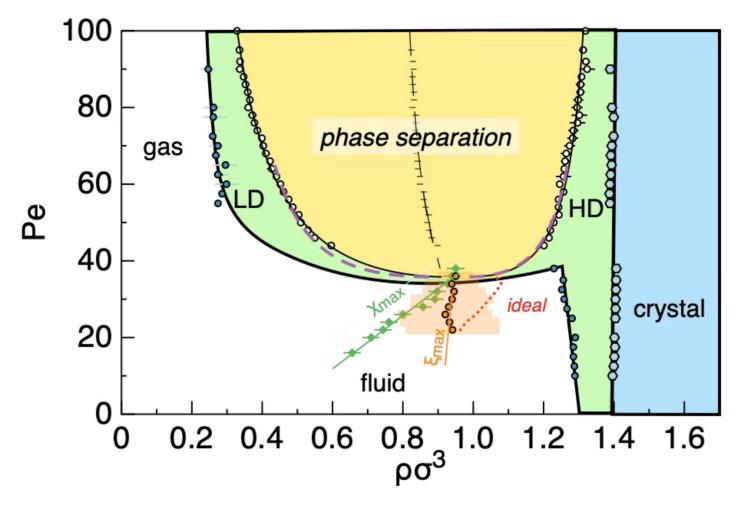
- 1. Short times: Diffusive $\sim 4 D_T au$
- 2. Intermediate: Ballistic $\sim v_0^2 au^2$
- 3. Long times: Enhanced diffusion
- $au_R=1/D_r$: persistence time
- ullet $D_{
 m eff}=rac{v_0^2}{2D_r}$: effective diffusion


Mean squared displacement for ABPs at different self-propulsion speeds.

Effective Interactions

The persistence of active motion can lead to effective interactions between particles.

- Head-to-head collisions lead to a persistence time of contact between two particles
- This can be seen as an effective attraction between particles



Effective twobody potential for ABPs, Turci & wilding PRI 2021

(The reality is more complex, with many-body effects!)

Motility-Induced Phase Separation (MIPS)

Interacting ABPs → nonequilibrium self-organization

MIPS in 3D ABPs from Turci and Wilding Physical Review Letters 2021

Key idea: Purely repulsive particles (hard spheres) + ABP dynamics

MIPS Mechanism

Equilibrium (no self-propulsion):

- Hard spheres
- No liquid-gas separation

Active (with self-propulsion):

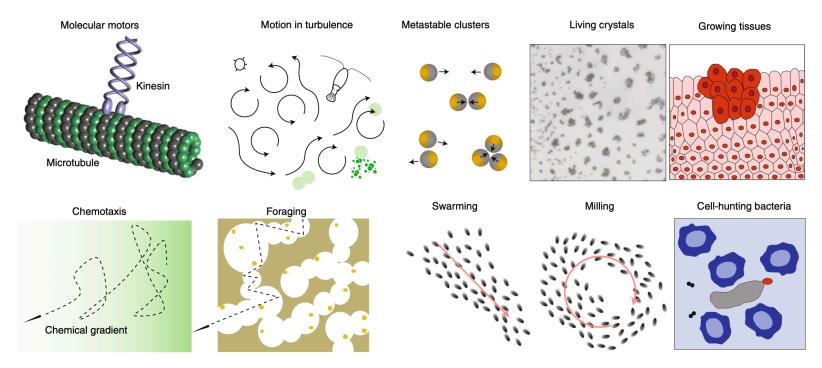
- Head-to-head collisions
- Finite residence time
- Many-body caging
- Density heterogeneities

As D_r decreases:

- More persistent motion
- System more out-of-equilibrium
- Enhanced density fluctuations
- Spontaneous phase separation

MIPS: Critical-like Behavior

Phase diagram features:


- Low D_r : Dense + dilute phases (like liquid-gas)
- Critical point: Enhanced fluctuations
- MIPS exists both in 2d and 3D:
 - in 2D, disk ordering at high densities
 - in 3D, MIPS is **metastable** to gas-crystal, like colloid polymer mixtures.
- Short-range effective interactions between active particles

Result: Nonequilibrium phase transition in purely repulsive system!

Experimental realisation of active matter

In experiments, active systems can be realised in various ways:

- Bacterial suspensions: e.g., E. coli, B. subtilis
- **Synthetic microswimmers**: Janus particles with catalytic coatings
- **Light-activated colloids**: Particles that change motility under light
- Vibrated granular matter: Macroscopic particles on vibrating plates
- Nano- and micro-robots: Swarms of tiny robots with programmed motion

Experimental systems and active. matter behaviours