Complex Disordered Systems

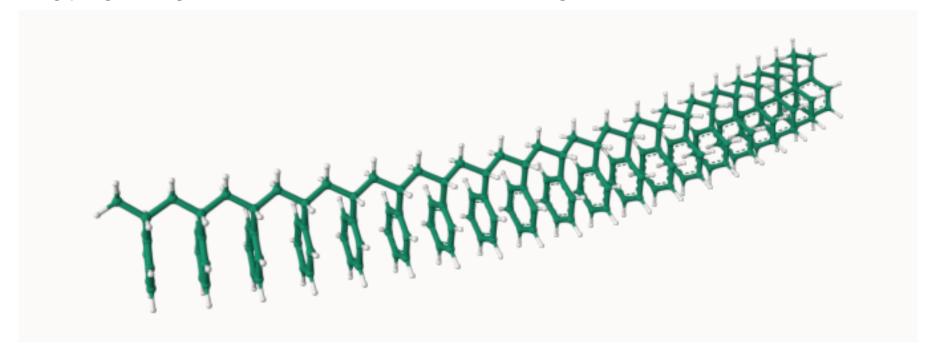
Polymers: definitions

Francesco Turci

What are Polymers?

- Large molecules made of many individual units: monomers
- ullet Degree of polymerization: $N>10^5$ units possible
- Macroscopic behavior dominated by large-scale properties
- Statistical mechanics needed even for single chains as they have many components subject to thermal fluctuations

Typical modelling progressing from fine structure details → **coarse-grained models**



Polymer Architectures

Polymers have many possible architectures:

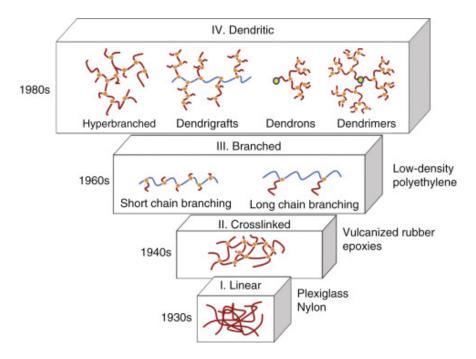
• **Linear**: Straight chains (e.g., polyethylene)

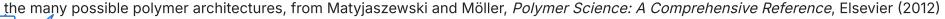
• Branched: Main chain + side branches

• Star: Multiple arms from central core

• Cross-linked: Network structures (rubbers, thermosets)

Focus: We will only discuss linear homopolymers for theoretical simplicity.





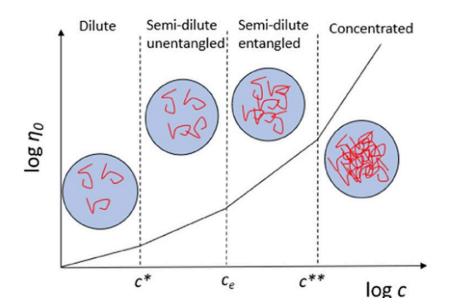
Statistical Nature of Polymer Conformations

Why statistical?

- Enormous number of configurations
- Thermal fluctuations drive conformational changes
- Only average properties are measurable

Separate regimes

- *Dilute solutions*: Polymer-solvent interactions dominate
- Concentrated: Polymer-polymer entanglements



Freely-Jointed Chain Model

Assumptions:

- ullet Monomers at positions ${f R}_{
 m j}$ and connected by bonds ${f r}_j={f R}_j-{f R}_{j-1}$ of length $|{f r}_j|=b_0.$
- ullet N segments of fixed length b_0
- All bond angles equally likely
- effectively, it produces a random walk in 3D
- The key quantity is th **end-to-end vector**:

$$\mathbf{R} = \mathbf{r}_1 + \mathbf{r}_2 + \cdots + \mathbf{r}_N = \sum_{j=1}^N \mathbf{r}_j.$$

Freely-Jointed Chain Model

End-to-end vector statistics

The polymer fluctuates between all possible random-walk-like configurations at **fixed** inter-monomer distance.

The mean squared end-to-end distance is then simply

$$egin{aligned} \langle \mathbf{R}^2
angle &= \left\langle \left(\sum_{i=1}^N \mathbf{r}_i
ight) \cdot \left(\sum_{j=1}^N \mathbf{r}_j
ight)
ight
angle \ &= \left\langle \sum_{i=1}^N \sum_{j=1}^N \mathbf{r}_i \mathbf{r}_j
ight
angle \end{aligned}$$

We can split the sum into the terms where i=j and the rest. This yields in general

$$\langle {f R}^2
angle = N b_0^2 + \langle {f r}_i {f r}_j
angle$$

We assume that successive segments are independent, so

$$\langle {f R}^2
angle = N b_0^2$$

Any similarities with previous results? Think about the MSD.

End-to-end vector statistics

We can then use the results of by identifying N (the number of moonomers) with t (the number of steps).

$$\left\langle \mathbf{R}^{2}
ight
angle =\left\langle R_{x}^{2}
ight
angle +\left\langle R_{y}^{2}
ight
angle +\left\langle R_{z}^{2}
ight
angle =3\sigma^{2}=Nb_{0}^{2}\Rightarrow\sigma^{2}=rac{Nb_{0}^{2}}{3}$$

where σ is the variance per component.

For long chains the end-to-end distance is distributed as a **3D Gaussian**, centered at zero, with variance proportional to N:

$$P(\mathbf{R}) = \left(rac{3}{2\pi N b_0^2}
ight)^{3/2} \exp\left(-rac{3\mathbf{R}^2}{2N b_0^2}
ight).$$

Gyration tensor and radius of gyration

- The end-to-end vector is most meaningful for linear structures.
- Other conformation (compact, branched or star-shaped polymers) are better characterised by a measure of the (average) extent of the polymer chain: the radius of gyration,

The radius of gyration is a generic quantity that can be measured from any point cloud. It is closely linked to the (co)-variance of the set of points.

We start with the standard centre of mass

$$\mathbf{R}_{ ext{CM}} = rac{1}{N} \sum_{j=1}^{N} \mathbf{R}_{j}$$

In general terms, we cna define a matrix called the gyration tensor (also called the configuration tensor):

$$\mathbf{S} = rac{1}{N} \sum_{j=1}^{N} (\mathbf{R}_j - \mathbf{R}_{ ext{CM}}) \otimes (\mathbf{R}_j - \mathbf{R}_{ ext{CM}})$$

where \otimes denotes the outer product, and ${f S}$ is a 3 imes 3 symmetric matrix.

Gyration tensor and radius of gyration

The elements of S are given by

$$S_{lphaeta} = rac{1}{N} \sum_{j=1}^N (R_{j,lpha} - R_{ ext{CM},lpha}) (R_{j,eta} - R_{ ext{CM},eta})$$

where $lpha,eta\in\{x,y,z\}$.

The radius of gyration squared is then simply the trace of this tensor (hence, invariant):

$$R_g^2={
m Tr}({f S})=S_{xx}+S_{yy}+S_{zz}$$

The tensor is symmetric and real \rightarrow diagonasable.

Eigenvalues and eigenvectors of S provide information about the principal axes and shape anisotropy of the polymer coil (do you remember 3D mechanics and Euler angles?).

The **tensor of gyration** corresponds to the **covariance matrix** of the positions \mathbf{R}_{j} .

For the ideal freely-jointed chain, the end-to-end vector and the radius of gyration are linked

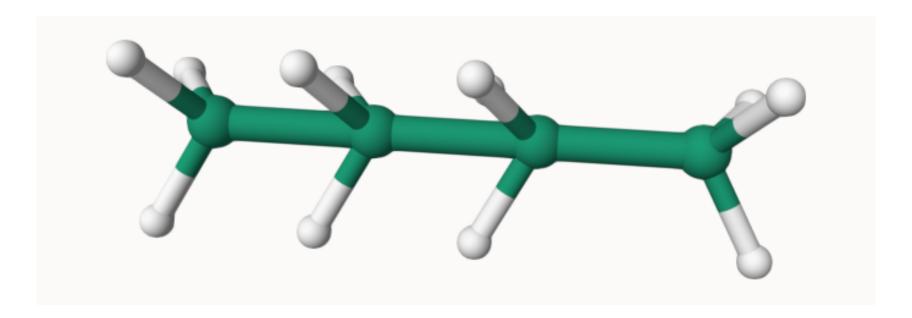
$$\langle R_g^2
angle = rac{1}{6} \langle R^2
angle$$

Freely-Rotating Chain

A more realistic model takes into account that bond angle are usually restricted.

Take n-butane:

$$H_3C - CH_2 - CH_2 - CH_3$$



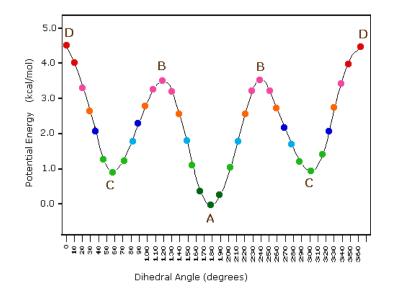
n-butane

The valence (or bond) angle is the angle between two adjacent chemical bonds. The C-C-C is around 112° .

Freely-Rotating Chain: dihedral angle

Rotations about the C-C bond are possible and are qualified by the dihedral (or torsional) angle

$$A = \begin{bmatrix} H_{3}C \\ H_{1} \end{bmatrix} = \begin{bmatrix} H_{3}C \\ H_{2} \end{bmatrix} = \begin{bmatrix} H_{3}C \\ H_{3}C \end{bmatrix} = \begin{bmatrix} H_{3}C \\ H_{3}C$$



Four conformers of butane, from LibreText Chemistry

Potential energy of the conformers

- ullet At low temperatures ($k_BT < {
 m configurational\ energy})$ **A** (an *anti* conformation) .
- ullet Rising $k_BT\sim$ there will also be **C** (gauche) configurations.
- ullet At high temperatures ($k_BT\gg$ config. energy), any angle will be possible.

Freely-Rotating Chain Model

Simple but richer model than the freely jointed model:

- Fixed bond angle heta
- Torsional angle φ can take any value $0 \leq \varphi \leq 2\pi$.

Imagine we have a configuration $\{\mathbf{r}_l, \mathbf{r}_2, \dots, \mathbf{r}_{j-1}\}$ and want to add the **next segment**.

• Average \mathbf{r}_j over φ , while keeping $\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_{j-1}$ fixed, only the component in \mathbf{r}_j direction remains:

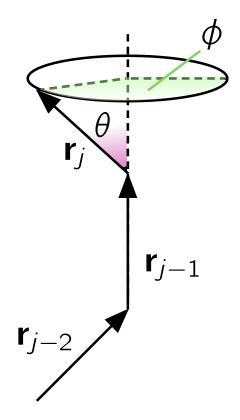
$$\langle \mathbf{r}_j \rangle_{\mathbf{r},\mathbf{r}_2,\dots,\mathbf{r}_{j-1}} \quad \text{fixed} = \cos \theta \mathbf{r}_{j-1}$$

Multiplying both sides by \mathbf{r}_k and averaging over all configurations gives

$$\langle \mathbf{r}_j \cdot \mathbf{r}_k \rangle = \cos \theta \, \langle \mathbf{r}_{j-1} \cdot \mathbf{r}_k \rangle$$
.

Applying this relation recursively leads to

$$\langle {f r}_j \cdot {f r}_k
angle = b_0^2 (\cos heta)^{|j-k|}$$



Freely rotating chain model

Freely-Rotating Chain Model

Given

$$\langle {f r}_j \cdot {f r}_k
angle = b_0^2 (\cos heta)^{|j-k|}$$

for $\cos heta < 1$, correlations between \mathbf{r}_j and \mathbf{r}_k decrease with increasing distance |j-k| .

We can link this to the $\operatorname{end-to-end}$ distance (proof in the lecture notes) and get the large N limit

$$\left\langle R^2
ight
angle pprox Nb_0^2 + rac{2b_0^2}{1-\cos heta}N\cos heta = Nb_0^2\left(rac{1+\cos heta}{1-\cos heta}
ight) = CNb_0^2$$

with

$$C = (1 + \cos \theta)/(1 - \cos \theta).$$

Freely-Rotating Chain Model: Effect of Bond Angle

 $1.~ heta
ightarrow 0: C \gg 1
ightarrow ext{Rigid rod}$

$$\langle R^2
angle \gg N b_0^2$$

Nearly straight chain. The end-to-end distance is much larger than that of a flexible chain with the same number of segments.

2. $heta o \pi$: $C \ll 1$ o Collapsed globule

$$\langle R^2
angle \ll N b_0^2$$

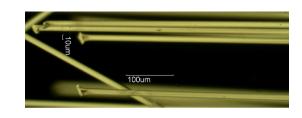
Compact, globular, collapsed assembly. Examples: polypeptides, polystyrene in water, chromatin

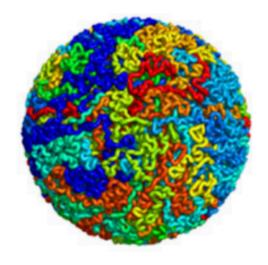
3.
$$\theta=90^{\circ}$$
: $C=1$ \rightarrow Ideal random walk

$$\langle R^2
angle = N b_0^2$$

Corresponds to our original **freely jointed chain** (random walk).

Play with models





Kevlar fiber (top) and chromatin globule model (bottom)

Persistence and Kuhn Length

So in general $\langle R^2
angle \propto N$

- Replace real chain with equivalent **freely-jointed** chain
- Same contour length: $Nb_0=N^\prime b$
- ullet Same end-to-end distance: $CNb_0^2=N'b^2$

Results:

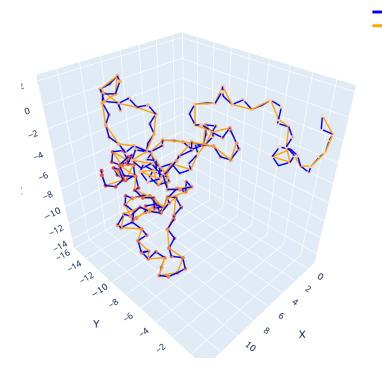
- Kuhn length: $b=Cb_0$
- Persistence length: correlations along the chain decay like

$$\langle {f r}_i \cdot {f r}_{i+n}
angle = b_0^2 \langle \cos heta
angle^n = b_0^2 e^{-nb_0/l_p}$$

with
$$\ell_p=b/2$$

ullet Kuhn segments: $N^\prime=N/C$

Original contour length: 200.0000 Coarse-grained contour length: 163.8304



Effective freely-jointed chain

Excluded Volume Effects

True monomers cannot occupy same space

- local scale: restrictions on the bond angles stopping them from overlapping
- large distance excluded volume interactions between monomers, also deforming the chain

Consider that for a coiled polymer

$$V_{
m coil}\,=rac{4\pi}{3}\left(\left\langle R_g^2
ight
angle^{1/2}
ight)^3\simrac{4\pi}{3}N^{3/2}b^3$$

So

$$rac{V_{
m monomers}}{V_{
m coil}} = rac{Nb^3}{N^{3/2}b^3} \sim N^{-1/2}$$

For $N=10^4$: only ~1% of coil volume occupied!

So excluded-volume interactions are meant to present a small contribution.

Yet they affect the scaling properties.

=

Self-Avoiding Walk

Balance of competing effects:

1. **Entropy**: Favors compact configurations

2. **Excluded volume**: Favors chain expansion

Entropy:

$$S = k_B \ln(\text{ number of configurations })$$

For a given end-to-end vector the number of configurations scales as

$$P({f R}) = \left(rac{3}{2\pi \langle R^2
angle}
ight)^{3/2} e^{-rac{3R^2}{2\langle R^2
angle}}$$

and so

$$S \sim rac{-3k_BR^2}{2Nb^2} + ext{ terms indep. of R}.$$

Self-Avoiding Walk

The configurational part of the internal energy can be estimated by focusing on monomer-monomer contacts for monomers of volume V_1 .

We approximate this with a segment gas confined in a volume \mathbb{R}^3 . The density (or probability) of contacts is

$$\rho_c=N^2V_1/R^3\sim N^{1/2}$$

by using $R^2 \sim N$.

We have $\sim N^2
ho_c$ pairs at some energy scale per bond arepsilon so

$$U\sim arepsilon N^2 V_1/R^3$$

and the total free energy is approximately

$$F=rac{arepsilon N^2 V_1}{R^3}+rac{3k_BTR^2}{2Nb^2}$$

(we are interested in scaling behaviour)

Self-avoiding walk

From

$$F=rac{arepsilon N^2 V_1}{R^3}+rac{3k_BTR^2}{2Nb^2}$$

we can find the minimum that satisfies dF/dR=0 and get

$$R^5 = rac{arepsilon V_1 b^2}{k_B T} N^3 \sim rac{arepsilon}{k_B T} N^3 b^5$$

which ultimately is

$$R \sim N^{3/5} b$$

So ultimately we get a scaling exponent different from freely jointed chain:

- freely jointed chain: $R \sim N^{1/2}$
- ullet self-avoidign walks: $R \sim N^{3/5}$

Self avoiding walk

```
Python Code ⊕ Start Over

N = 100

x_saw, y_saw = self_avoiding_walk_2d(N)

plot_walk_2d(x_saw, y_saw,title="2D Self-Avoiding Walk", col | ython Code ⊕ Start Over |

N = 100

x_saw, y_saw = self_avoiding_walk_2d(N)

plot_walk_2d(x_saw, y_saw, title="2D Self-Avoiding Walk", col |

python Code ⊕ Start Over |

N = 100

x_saw, y_saw = simple_random_walk_2d(N)

plot_walk_2d(x_saw, y_saw, title="2D Random Walk", color="fc")
```

