Complex Disordered Systems

Polymers and solvents

Francesco Turci

Today

- Good, poor and theta solvents
- Concentrated polymer solutions

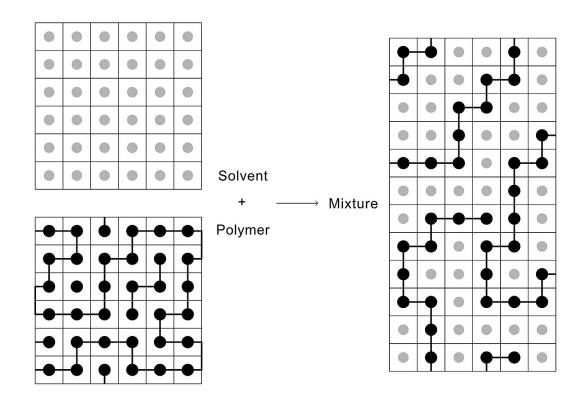
Polymers in solvents

- Polymers typically are dispersed in a medium (solvent).
- Solvent-polymer attractions (the affinity) influences the polymer conformations:
 - **good solvents** \rightarrow high affinity \rightarrow the polymer swells (expands)
 - **poor solvents** \rightarrow low affinity \rightarrow the polymer shrinks

The affinity depends on the details of the molecular interactions but can be coarse-grained.

We can construct a simple model with **effective interaction energies**

- ε_{ss} for the solvent-solvent
- ullet $arepsilon_{
 m pp}$ for monomer-monomer
- ε_{sp} for solvent-monomer interactions.


Energy of mixing

On-lattice model:

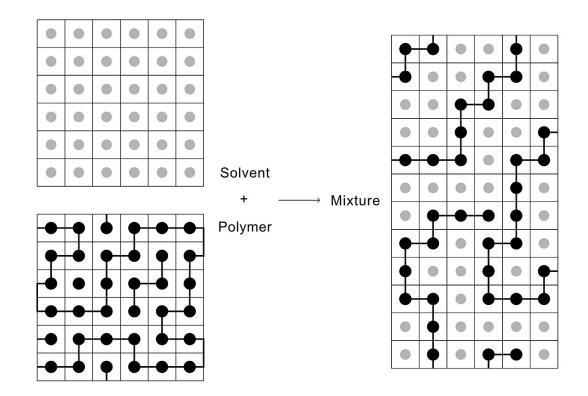
- each site has z nearest neighbours
- N_s solvent molecules
- ullet N_p monomers
- ullet N_{sp} solvent-monomer contacts.

Effective interactions:

- ε_{ss} for the solvent-solvent
- ullet $arepsilon_{
 m pp}$ for monomer-monomer
- ε_{sp} for solvent-monomer interactions.

Then the energy of mixing $\Delta U_{\rm mix}$ is obtained as the difference between the total energy U of the mixed system and the sum of the energies of the **pure solvent** and **pure polymer**, $U_S + U_p$.

$$\Delta U_{
m mix} = U - (U_S + U_p)$$


Energy of mixing

Energy of pure solvent

$$U_s=rac{zN_sarepsilon_{ss}}{2}$$

Energy of pure polymer

$$U_p=rac{zN_parepsilon_{pp}}{2}$$

Energy of solution
$$U=N_{sp}arepsilon_{sp}+rac{\left(zN_s-N_{sp}
ight)arepsilon_{ss}}{2}+rac{\left(zN_p-N_{sp}
ight)arepsilon_{pp}}{2}$$

We obtain that the **energy of mixing** $\Delta U_{
m mix}=N_{sp}\left[arepsilon_{sp}-rac{1}{2}\left(arepsilon_{ss}+arepsilon_{pp}
ight)
ight]$

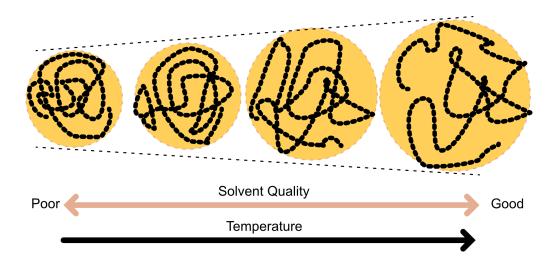
which can change sign depending on our choices for the effective interaction energies.

Good solvents, poor solvents and theta solvents

• Good solvent: $arepsilon_{sp} < rac{1}{2} \left(arepsilon_{ss} + arepsilon_{pp}
ight)$ $\therefore \Delta \mathrm{U}_{\mathrm{mix}} < 0$

This is the case of a 'good solvent', because the monomers prefer to be near the solvent molecules. Excluded volume effects then expand the chain.

• Poor solvent: $arepsilon_{sp} > rac{1}{2} \left(arepsilon_{ss} + arepsilon_{pp}
ight)$ $\therefore \Delta \mathrm{U}_{\mathrm{mix}} > 0$


The attraction between the different monomers offset the excluded volume effect making the polymer collapse.

• Tuning solvent properties (e.g. the temperature) leads to **conformational changes**

Temperature dependence and theta (Θ) solvents

The various affinities have temperature dependencies. Typically:

- ullet At high T, the coil expand and the solvent is good
- ullet At low T the coil collapses and phase separation is observed (polymer-rich from polymer-poor phase)
- There is an intermediate temperature where the excluded volume and attractive interaction compensate each other and allow for the polymer to behave like an ideal chain (freely jointed chain).
 - The temperature is conventionally named Θ temperature (or *Flory* temperature, after physicist Paul Flory)
 - ullet The Θ temperature increases wth the solvent-polymer attractions (we need higher temperature to reach ideal behaviour)

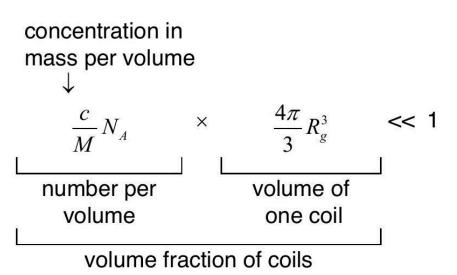
Swelling behaviour of polymers in solvent.

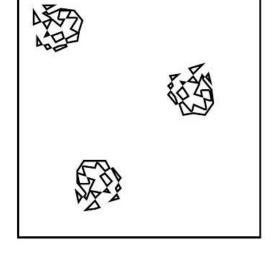
Examples

- Example: Food polymer gelatine (from collagen) in water
 - Good solvent (hot water): gelatin chains hydrate and swell; the protein dissolves and the solution is fluid.
 - Θ / marginal: intermediate temperature where hydration and chain self-attraction roughly balance; solution is viscous but not set.
 - Poor solvent (cold): effective attractions dominate; chains associate into a network, causing gelation (collapsed/aggregated network).

We will see gelation in a few sessions.

Concentrated polymer solutions


- We mostly dealt with **single polymers** and their propertie up to now.
- Many polymers together make a **polymer solution**


As we vary the **concentration** the behavior qualitatively changes.

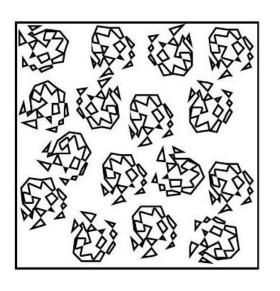
We will increase the concentration in steps to reach **bulk polymers**

Dilute regime

- The polymer coils are well-separated on average.
- ullet The system is dilute if the polymer concentration c is such that

where N_A is Avogadro's number, M is the molar mass of a single chain and R_g is the radius of gyration of the chain.

Essentially, the polymers do not overlap.


Overlap concentration c*

Overlap occurs when the volume fraction of coils reaches unity and thus

$$rac{c^*}{M}N_Arac{4\pi}{3}R_g^3\sim 1 \quad \therefore c^*=rac{3M}{4\pi N_AR_g^3}$$

Phenomenologically one has $Rg=\langle R_g^2 \rangle^{1/2}=BM^{
u}$ with an empirical exponent called the **Flory scaling exponent**. Hence

$$c^* = rac{3}{4\pi N_A B^3} M^{1-3v}$$

Overlap concentration c*

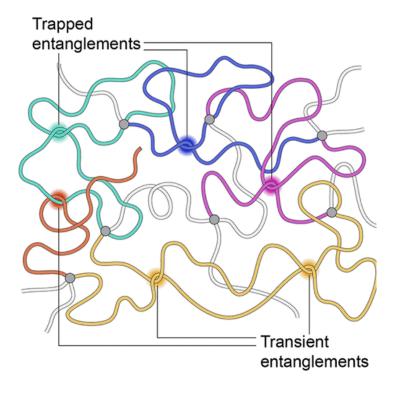
$$c^* = rac{3}{4\pi N_A B^3} M^{1-3v}$$

Example of polystyrene in a good solvent:

Parameter	Value	Unit
Molar mass (M)	10^{6}	${\rm g\ mol}^{-1}$
Flory exponent (v)	0.6	
Kuhn length (B)	0.028	nm (g ${\rm mol}^{-1}$) $^{-0.6}$
Overlap concentration (c*)	0.29	kg m $^{-3}$ (or 0.29 mg/ml)
Polystyrene density (ρ)	1050	${ m kg~m}^{-3}$
Volume fraction of monomers	0.28×10^{-3}	


For large polymers, c^* can be very small.

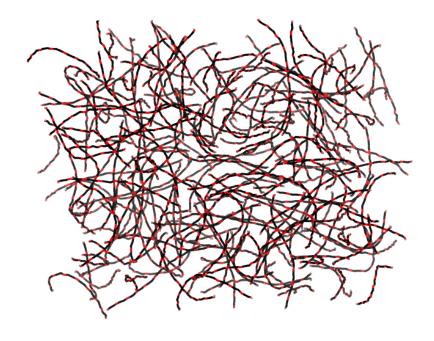
Semi-dilute


- ullet The concentration is larger than the overlap concentration c^{st} , but still much smaller than the bulk density.
- The coils interpenetrate and **entanglement** begins
- Change in the dynamics (slowing down)
- Yet, the solution is still mostly solvent.

Start of the formation of a **polymer network** with transient **crowded regions** *within* the solvent.

Polymer entanglement

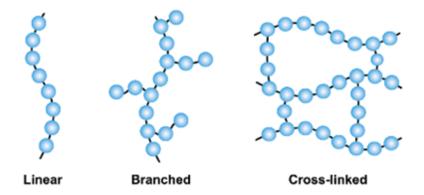
- Polymer entanglement occurs when overlapping polymer chains become topologically intertwined, creating temporary physical knots that restrict chain motion and significantly affect the material's mechanical and rheological properties.
- Introduces topological constraints (transient/permanent)



Concentrated: bulk polymers

- Polymer concentration approaches bulk density
- Monomers occupy significant fraction of total volume
- Highly interpenetrated coils form continuous network
- Polymer-polymer interactions dominate over polymersolvent interactions
- Chain entanglements restrict segment motion
- Transition from solution-like to solid-like behavior
- Increased mechanical strength and viscosity
- Complex dynamics due to crowding effects

These are the feature of density-driven glassy behaviour.



Polyethylene Glycol polymer melt (from Martini project)

Cross-linking

Cross-linking is the process of forming **covalent bonds between separate polymer chains**, creating a **three-dimensional network structure**. These bonds:

- Connect different chains at specific points
- Restrict chain movement and deformation
- Increase mechanical strength and rigidity
- Can be temporary (reversible) or permanent (irreversible)
- Determine material properties: low cross-linking allows flexibility, high cross-linking creates brittleness

Cross linking bonds (reversibly or irreversibly) different chains.

Bulk polymer classes

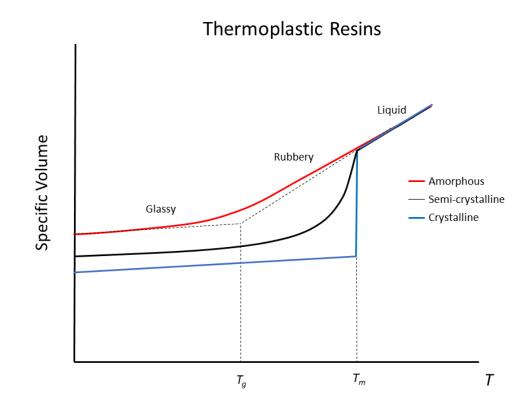
Two main classes of bulk polymers, characterised by whether they are cross-linked or not.

- Elastomers (rubbers): low cross-linking → flexible and elastic (stretch and return to original shape)
- Thermosets: high cross-linking → rigid, hard, brittle network
- Thermoplastics: no cross-linking → most everyday plastics; behavior upon cooling shows similarities to colloids

Polymer bulks are often referred to as **resins**.

Examples of bulk polymer classes

Class	Examples	Properties	Applications
Elastomers	Natural rubber, silicone rubber, neoprene	Flexible, elastic, low cross- linking	Tires, seals, gaskets, flexible tubing
Thermosets	Epoxy resins, phenolic resins, polyurethane foam	Rigid, hard, high cross- linking, irreversible	Circuit boards, adhesives, insulation, structural composites
Thermoplastics	Polyethylene (PE), polypropylene (PP), PET, polystyrene (PS), PVC	Recyclable, moldable upon heating, no cross-linking	Packaging, bottles, pipes, automotive parts, consumer products



Natural rubber, epoxy substrate for circuits, PET used in plastic bottles

Thermoplastics behaviour upon cooling

- At high temperature the free energy is dominated by entropy.
 - random assembly of intertwined flexible coils
- Upon cooling, potential energy dominates and chain rotation becomes restricted, favoring more extended configurations.
- Below melting temperature T_m , **crystals form** (lowest free energy state), but require slow cooling and significant molecular ordering.
- Rapid cooling below glass transition temperature T_g (< T_m) prevents crystallization, forming an amorphous glassy state instead—a metastable, long-lived solid.
- Solid thermoplastics typically contain a **mixture of crystalline and amorphous regions**.

